
1.,. I SolMis StroClo", Vol. 18. No. I. pp. 431-441. 1982
Printed in Grelt Britain.

0200-7683/82IOlO4JI-IISOJ.OOlO
Perpmon P,.,. lid.

PIECEWISE POWER LAW HARDENING FOR
DUCTILE TEARING INSTABILITY ANALYSIS

AKRAM ZAHOORt

Ballelle, Columbus Laboratories, 505 King Avenue, Columbus, OH 43201, U.S.A.

(Rtceivtd 30 Dtcembtr 1980; in revistd {onn 12 Junt 1981)

Abstract-A J-integral based tearing modulus approach is utilized for investipting crack growth instability
in an elastic-plastic strain hardening material. A center-cracked panel of finite dimensions with linear
elastic-piecewise power law hardening material behavior is analyzed under displacement controlled loading.
Plane stress as well as plane strain situations are considered. Numerical results are presented for a linear
elastic-piecewise power law representation and are compared with an alternate Ramberg-Osgood material
representation. Stability of crack growth for a range of crack length to width ratio, alb, of the panel is
discussed via the tearing modulus parameter, T.

INTRODUCTION

In recent years the concepts of fracture mechanics have been increasingly applied in the
assessment of structural integrity of power generating systems. The methods of linear elastic
fracture mechanics (LEFM) have been found very useful in assessing the safety of structural
components loaded in the elastic regime where crack tip deformations are confined to small
regions. These methods have been successfully applied primarily in the lower shelf and the
lower transition temperature range. Moreover, these methods have been often applied only to
the onset of crack growth at which point fracture is assumed to have occurred.

Significant plastic zones are encountered in many practical applications involving ductile
materials in the upper shelf regime. Of several fracture criteria that have been proposed to
handle situations involving moderate to large scale yielding, the I-integral approach[l-3] to
characterize fracture has become increasingly popular. It has been shown that the I-integral,
which is based on the deformation theory of plasticity, can be regarded as a measure of the
intensity of the strain and stress field surrounding a crack tip [4,5]. The I-integral reduces to the
energy release rate, G, in the linear elastic regime.

Tough and ductile nuclear reactor materials undergo extensive plastic deformations preced
ing initiation of crack growth. Moreover, crack growth instability is generally preceded by some
amount of stable crack growth. Consequently, application of LEFM to tough and ductile
materials, using crack initiation as the fracture criterion, gives considerable underestimate of
their strength. The extent by which the strength is underestimated is in general dependent upon
the crack growth resistance of the material, flaw size, and the manner in which the structure is
loaded, i.e. displacement control or load control.

Concern to utilize the additional load carrying capability, which would otherwise lead to
premature shutdown, replacement, or prohibitive maintenance costs, led to the recent attention
to the resistance curve approach. This paper concerns with the I-integral-Tearing Modulus
approach proposed by Paris et al. [6]. This approach is based on the I -integral and utilizes a
I-resistance curve, similar to the R-curve approach in LEFM. A particularly attractive feature
of this approach is that it includes the system supporting the cracked component for determin
ing instability. The theoretical justification for the application of the I-integral to crack growth,
and the conditions for I-controlled growth have been discussed recently [7, 8].

In this paper, stability of crack growth in a center-cracked panel under a mode I loading
situation is discussed. Studies on crack growth instability of center-cracked panels obeying
Ramberg-Osgood stress-strain behavior and fully plastic power law hardening behavior have
been reported elsewhere [7-10]. The interest in this paper is to consider a linear elastic
piecewise power law hardening material for the panel. The reason for assuming such a material
behavior is that it reasonably characterizes the stress-strain curve for most structural materials,
and may be preferable to use in situations where Ramberg-Osgood representations is not
convenient. In this work, the estimation procedure of [11-13] will be utilized to investigate the
stability of small amounts of crack growth under I-controlled growth conditions.

tNow Director of Advanced Technology, Fracture Proof Design Corporation, Saint Louis, MO 63108, U.S.A.

S5 Vol. 18. No. l-E 431



432 A. ZAHOOR

DUCTILE TEARING INSTABILITY APPROACH

An approach to stability of ductile tearing mode of crack growth called the "Tearing
Modulus Approach" was proposed by Paris et al.[6}. This approach is based on the use of the
J-integral as a crack tip characterizing parameter and a I-resistance curve. For a given load, a,
crack length, a, and other relevant dimensions of a cracked body, J may be thought of as the
applied J or imposed field of strains and stresses in the crack tip region. The J-resistance curve,
on the other hand, is an experimentally derived curve of Jmoll vs crack growth, A.a, The JmOl1 is
the I value a material may sustain at a crack tip for a given amount of crack growth. I motI is
generally considered to be a function of crack growth, A.a, at least for a given temperature and
constraint at the crack tip. Hence, equilibrium considerations require

J«(T, a, C, B) =Jmotl(Aa), (I)

where, as shown in Fig. 1, C is the width of the uncracked ligament and B is the thickness of
the cracked body.

The stability of crack growth is examined by comparing the calculated dIlda to J-resistance
curve slopes in the following manner:

(i) if dJ <dJmal! then stable, (2)
da da

or

(ii) 'fdJ > dlmal! then unstable. (3)
I do - do

Paris et al. [6} introduced a non-dimensional parameter called the Tearing Modulus, T, which is
defined as

dl E
T=-'-:-:2 'da (To

(4)

where E is the elastic modulus and (To is the flow stress. The instability criterion, eqn (3) then
takes the form

L

Tappl. > Tmoll '

,

I
I

i I
c-+-20--\

I,
B

(5)

....---2b---o.f

Fig. I. A center-cracked panel with a linear elastic spring.
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Crack extension invariably involves unloading behind the crack tip and some non-propor
tionalloading. This limits the use of the I-integral since it is based on the deformation theory of
plasticity. In order for a I-integral based approach to be valid, Hutchinson and Paris [7) argued
that dominantly proportional strains must exist surrounding the advancing crack tip. They
argued that for small amounts of crack growth a sufficient requirement for I -controlled growth
is that the parameter w

(6)

Further discussions on this aspect can be found in [7,8,14-17). In this paper it is assumed that
the I -controlled growth conditions are applicable. In the analysis that follows, relationships for
dl/da or T.ppJ. will be developed for a center-cracked panel subjected to mode I loading. A
linear elastic-piecewise power law hardening material is assumed for the panel. Furthermore,
only plane problems, i.e. plane stress or plane strain, are considered.

THE CENTER-CRACKED PANEL

Consider a pure power law hardening material for which the stress-strain relationship in
simple tension is of the form

(7)

where Uo and Eo are a reference stress and strain, respectively. a is a constant and n is the
strain hardening index of the material. For problems with above material representation
involving a single load or displacement parameter which increases monotonically, it has been
shown by I1yushin[18] that the quantities such as stress, strain and displacement increase in
direct proportion to the load or displacement parameter to a certain power. For example, if U~,

the uniform applied stress at the ends of the panel, is the load parameter then the stress at
every point increases in proportion to u"', whereas the strain increases in proportion to (u~)·.

Noting this simple dependence, Hutchinson et aJ. [12, 19] proposed that the I ·integral
can be expressed explicitly in terms of two functions: one, a function that depends solely on the
load parameter; and second, a function that depends on the geometry of the cracked configuration.
For a center-cracked panel, the I-integral can be expressed in simple and convenient functional
form as foJIows[8, 10, 19)

(8)

where (P/Po) is a non-dimensionalized load parameter and FI.(a/b, n) is a function that depends
upon crack length to width ratio, a/b, and the strain hardening exponent, n. P and Po are the
loads per unit thickness and are related to to the applied stress, u'" (see Fig. I), and the net
section stress corresponding to the perfectly plastic limit, ULo by

P = 2bu~ Po =2CUL with UL =XUo. (9)

X has the value of I or 2/\1'3 for plane stress or plane strain respectively. The values of the
non-dimensional function Fl. in eqn (8) were derived from the numerical results of Refs.
[12, IS) and are tabulated in [10].

An interesting feature of the solution for crack problems based on eqn (7) is that when
n = I, it gives the linear elastic solution whereas for n = 00, it gives the rigid/perfectly plastic
limiting case. In general, for an elastic-plastic loading, these two limiting solutions can be
utilized to interpolate over the entire range of yielding[I I).

Consider alternatively a linear elastic-piecewise power law hardening material. The stress
strain relation in simple tension is

(E/EO) = (qJuo) for uS Uo,
and

(Efta) = (u/uor for u> Uo, (10)
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where CTo and EO are related to each other by CTo == EEo and E is the elastic modulus. It should be
noted that the relations in eqn (10) are special cases of eqn (7), thus allowing special cases of
eqn (8) for the I·integral to be utilized for the piecewise power law hardening material
behavior.

Following the estimation procedure proposed in [12] which is similar ina number ofrespects
to that of Bucci et af. [11], the I -integral for a material obeying relationship in eqn (10) mjiY be
written as [13]

and
1== bCToEo[I/II(alb, PIPo== I) +F1ft(alb, n)· {(PIPO)ft+l_ I)] for P > Po, (11)

where I/Il(alb, PIPo) and F1.(alb, n) are non-dimensional functions. These functions depend on
the plane stress or plane strain condition. The values of these functions are tabulated in· Rei.
[10] for a wide range of alb and n.Sample curves of I/Il(alb, PIPo) and F1ft(a/b,n) are shown in
Figs. 2 and 3 for n = 5 for the plane stress condition. The function I/I1(alb, PIPo) is a function of
(alb) but also of the load parameter (PIPo) which appears due to the plastic zone adjustment to
physical crack length in the linear elastic solution. The load parameter (P/Po)ref'tects the extent
of yielding in the remaining ligaments. When (PIPo) = I, the remaining ligaments of the panel
are considered to have been fully yielded.

In a manner similar to the estimation of I, the load·point displacement due to presence of a
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Fig. 2. Plane stress "'I vs alb for variou3 values of PIPo for n = 5.
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crack, Ac, can be written as

and
Ac =bEo[f/13(alb, PIPo =1)+ F3n (alb, n)' {(PIPo)" -I}] for P > Po, (12)

where f/13(alb, PIPo) and F3n (alb, n) are non-dimensional functions and are tabulated in Ref.
[10]. These functions are shown in Figs. 3 and 4 for n =5 for the plane stress condition.

ANALYSIS FOR STABILITY OF CRACK GROWTH

To investigate crack growth instability in center-cracked panels, a linear spring in series with
the panel is considered as shown in Fig. I. The spring represents the compliance of supporting
structure. A cracked component in a structural application is likely to be connected to relatively
rigid structure whereupon the nature of loading will be displacement controlled. The total
load-point displacement, AT, consists of contributions from the cracked panel and the spring.
Thus

(13)

where A.".c is the elastic contribution to the load-point displacement without the crack. Ac is
given by eqn (12) and AM =BCMP with CM as compliance of the linear spring.

Now, during crack growth under displacement controlled loading, the cha. in total
displacement, AT, will be zero. Thus

(14)
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Fig. 4. Plane stress 1/13 vs alb for various values of PIPofor n =5.

omitting details, the applied dJlda using eqn (14) is [8, 10]

dJII = [(aJ) _{(ade) (aJ) ![Be + (adt /lle ). + (ade) ]}]
daN.1r fixed aa p aa p aP a M ap a ap a

(15).

All the quantities in eqn (15) can be evaluated by utilizing eqns (11) and (12) and by noting that
dehtc = PLl2Eb.

Equations (15) and (5), after some algebraic manipulation, give the following two conditions
for instability of crack growth:
(a) for P:5 Po

(16)

where

(b) for P > Po

where Al to As and I/Ih 1/13, <P4 are functions of I/Jh 1/13, FIll and Fill and their derivatives. These
are defined in Appendix I.

Equation (16) is used when u < Uo in eqn (10), i.e. when the panel is loaded such that
remaining ligaments are below full yielding (PIPosl). Thus,eqn (16) can be used in the linear
elastic regime and in confined yielding situations. Equation (17) is used only when panel· is
loaded such that the remaining ligaments are above full yiel(iing (PIPo> 1). In both these cases
X = I for the plane stress panel and all functions take their plane stress values when plane
stress problem is investigated for crack instability. Similarly, X = 2/"';3 for the plane strain
problem with all the functions taking their plane strain values in eqns (16) and (17).
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NUMERICAL RESULTS AND DISCUSSION

rJlUre 5 shows the suess-strain curves for linear elastic-piecewise power law hardening and
Rambeq-Osaood representations for a =1 and the material hardening index lieS. The
Rambera-Osaood representation gives a non-linear curve even when u!uo < 1. The effect of this
non-linear representation on Tapp!. values will be discussed and a comparison will be made with
the linear elastic representation.

Fiaure 6 shows the Tappl. vs (PIPo) curves for a plane strain center-cracked panel with
alb =0.5 and (lib +2BEC",) =20 for the two material representations. The equivalent length
parameter (lib +2BEC",) =20 is typical of laboratory tests. As seen. the Rambera-Osgood

n=5, 11.='
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Fig. 5. Non-dimensionalized stres5-Strain curves for two types of material representation.
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representation[lOJ gives higher values of T apPL when compared with the linear elastic represen
tation over the entire range of loading shown on Fig. 6. When (PIPo) :S I, the Ramberg....Osgood
representation[lOJ overestimates the value of TappL by a factor of 3 or more when compared
with the linear elastic representation. As discussed· earlier, the tearing modulus approach
requires both the 1 and Tappi for assessing instability. This information is plotted in Fig. 7 for
the same conditions of Fig. 6. On such a plot the apparently large difference in TappL values
from tbe two representations tend to disappear when compared for the same J/bUoEry.

Figure 8 shows a comparison of T ..ppL in the fully plastic regime, i.e. PIPo> I. Ase~pected,
the two representations give almost the same value of T.ppl for a given (PIPo). The values ·of
TappL for the Ramberg-Osgood representation shown on this figure were calculated using
analysis equations of Ref. [10]. It must be pointed out that for linear elastic-piecewise power
law representation T appL vs (PIPo) curves are expected to be discontinuous at PIPo = 1. This is
because the slope of the stress-strain curve with linear elastic-piecewise power low represen
tation is discontinuous at PIPo= 1. Further discussions on this aspect may be found in Ref. [20],

All the numerical results presented thus far were for alb = 0.5. It would be interesting to
investigate the variation of Tappl. with crack length or alb in this case. Figure 9 shows curves of
Tapp\ vs alb for several PIPo values. These curves were obtained by utilizing egns (16) and
(17) for a plane strain panel with n = 5 and (LIb +2BECM ) = 20. It is seen that tbe Ta,PPL

decreases with the increase in alb for the same applied load. This same information isplotted
on Fig. 10 in the form of T.pp,. VS 1lbuoEo. Here again, Tapp\ values decrease with increase in alb
for the same 11bUoEo. For determining instability of crack growth, the material. values of J and
their corresponding Tma1h which is obtained from an appropriate J-resistance curve, can be
plotted on Fig. 10[21J. The intersection of the applied (analysis) and the material curves will
then defined a critical value of 1 for a given (alb) at which crack growth would be unstable.
Knowing the critical value of 1, the critical value of load parameter (PIPo) can be calculated by
utilizing the relationship in egn (11).

The analysis presented here assumes that any crack growth, preceding instability, occurs
under a 1-controlled situation, and that the amount of crack growth is small. Recent work by
several authors [14] indicate that, in a center-cracked panel, 1-controlled growth can be justified
if crack growth is less than 2% of the uncracked ligament. For other standard crack configura-
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Fig. 7. Ta••L vs JlbuOEo for a plane strain panel.
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tions, a different amount of crack growth may be justifiable. For example, in compact
specimens crack growth up to about 6% of the uncracked ligament can be allowed within the
limitations of J·controlled growth. Because of the limitations of J-controlled growth for
assessing crack instability, a more genera) fracture parameter is required which can handle
larger amounts of crack growth.
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APPENDIX 1
The functions appearing in eqns (16) and (17) arc defined below:

A. =x(l- a/b)(Ub + C)(~31/1, - ~,F.o)

A2 = (~3•• - ~,F'o)nFJo

A3= (~6F30 - ~.~)(n + \)F.o

(
n+ I)A.=x(l-a/b)(Ub+C) ~'+I-a1b Flo

A, ={n~j - (n + \)~6}FloFJo

and

~. = (PIPo) . --!!I!L..
1/11 a(P/Po)

~3= I/Ii/l/ll

~. =1/1;11/13

~,=F;JF.o

~6= F;o/F30

(;2BECM•

In (A2) primes denote partial derivatives with respect to (a/b), e.g. 1/1; =a"'da(a1b).

(AI)

(A2)


